Systemy rekomendacji i poleceń utworów muzycznych



Systemy rekomendacji polegają na wykorzystaniu istniejących danych, aby proponować użytkownikom sugestie i wyniki bliższe ich indywidualnym preferencjom. 

Do personalizacji można używać technik wyszukiwania, rankingu i scoringu. Mechanizmy rekomendacji działają na podstawie takich danych  jak zbiory  produktów, artykułów lub książek, powiadomień, wiadomości e-mail i reklamy celowanej utworów muzycznych, list odtwarzania, czy filmów.

Przy rekomendacji utowrów muzycznych można opierać się na podejściu filtrowania współpracującego, aby zasilić silnik zaleceń czy rekomendacji. Ideą filtrowania współpracującego jest określenie preferencji użytkowników na podstawie danych historycznych. Na przykład, jeśli dwóch użytkowników słucha tego samego zestawu utworów, ich gusta są prawdopodobnie podobne. I odwrotnie, jeśli dwie piosenki są słuchane przez tę samą grupę użytkowników, prawdopodobnie brzmią podobnie. Tego rodzaju informacje mogą być wykorzystane w technice formułowania zaleceń.

Czysto zespołowe podejście do filtrowania nie wykorzystuje żadnego rodzaju informacji o polecanych utworach, z wyjątkiem wzorców konsumpcyjnych z nimi związanych: są one treściowo-agnostyczne. To sprawia, że podejścia te mają szerokie zastosowanie: ten sam typ modelu może być wykorzystany na przykład do polecania książek, filmów lub muzyki.

Niestety, okazuje się, że jest to również ich największa wada. Ze względu na ich zależność od danych użytkowych, popularne pozycje będą o wiele łatwiejsze do polecenia niż niepopularne, ponieważ dostępnych jest dla nich więcej danych użytkowych. Zazwyczaj jest to przeciwieństwo tego, czego chcemy. 

Inną kwestią, która jest bardziej specyficzna dla muzyki, jest heterogeniczność treści o podobnych schematach użytkowania. Na przykład, użytkownicy mogą słuchać całych albumów za jednym razem, ale albumy mogą zawierać utwory intro, outro, interludia, okładki i remiksy. Te pozycje są nietypowe dla danego artysty, więc nie są dobrymi rekomendacjami. Współpracujące ze sobą algorytmy filtrujące nie poradzą sobie z tym.

Największym jednak problemem jest to, że nowe i niepopularne piosenki nie mogą być rekomendowane, jeśli nie ma danych użytkowych do analizy, podejście do filtrowania współpracującego załamuje się. Jest to tak zwany problem zimnego startu. Chcemy być w stanie polecić nową muzykę zaraz po jej wydaniu i chcemy powiedzieć słuchaczom o niesamowitych zespołach, o których nigdy nie słyszeli. Aby osiągnąć te cele, będziemy musieli zastosować podejście rekomendacji opartej na treści. Istnieje wiele różnych rodzajów informacji związanych z muzyką, które mogą pomóc w rekomendacji: tagi, informacje o artyście i albumie, teksty piosenek, teksty wydobyte z sieci (recenzje, wywiady), a także sam sygnał audio.

Ze wszystkich tych źródeł informacji, sygnał audio jest prawdopodobnie najtrudniejszy do efektywnego wykorzystania. Istnieje dość duża luka semantyczna pomiędzy muzycznym audio z jednej strony, a różnymi aspektami muzyki, które wpływają na preferencje słuchacza z drugiej strony. Niektóre z nich można dość łatwo wyodrębnić z sygnałów audio, takie jak gatunek muzyki i używane instrumenty. Inne są nieco bardziej wymagające, takie jak nastrój muzyki i rok (lub okres czasu) wydania.

Pomimo tych wszystkich wyzwań, jasne jest, że rzeczywiste brzmienie piosenki odegra bardzo dużą rolę w określeniu, czy lubisz jej słuchać, czy nie - więc wydaje się, że dobrym pomysłem jest próba przewidzenia, kto będzie się cieszyć piosenką poprzez analizę sygnału audio.

Próbowano rozwiązać problem przewidywania preferencji słuchowych na podstawie sygnałów dźwiękowych, szkoląc się w modelu regresji w celu przewidywania ukrytych reprezentacji utworów, które zostały uzyskane na podstawie modelu filtrowania współpracującego. W ten sposób można przewidzieć reprezentacje piosenki w przestrzeni filtrowania współpracującego, nawet jeśli nie było dostępnych danych użytkowych.

Podstawową ideą tego podejścia jest to, że wiele modeli filtrowania współpracującego działa poprzez rzutowanie zarówno słuchaczy jak i piosenek na wspólną, nisko wymiarową przestrzeń ukrytą. Pozycja piosenki w tej przestrzeni koduje wszystkie rodzaje informacji, które wpływają na preferencje słuchacza. Jeśli dwie piosenki znajdują się blisko siebie w tej przestrzeni, to prawdopodobnie są one do siebie podobne. Jeśli piosenka jest blisko użytkownika, jest to prawdopodobnie dobra rekomendacja dla tego użytkownika (pod warunkiem, że jeszcze jej nie słyszał). Jeśli potrafimy przewidzieć pozycję piosenki w tej przestrzeni na podstawie dźwięku, możemy polecić ją odpowiedniej grupie odbiorców bez konieczności polegania na historycznych danych użytkowania.

Jesteś zainteresowany wykorzystaniem rozwiązań opartych na algorytmach sztucznej inteligencji w swojej firmie? Napisz do nas!

Nasza lokalizacja

Agencja Interaktywna  Web Wizard.com
rok założenia 2000


52-220 Wrocław, ul. Gen. Grota-Roweckiego 8/10
NIP:        PL 899-142-54-65
REGON:   932899803

kontakt telefoniczny w godzinach 8.30 - 16.30

tel.    +48 71 346 29 73
tel. kom.  +48 502 387 145

 

Formularz kontaktowy

Od nawiązania kontaktu z Nami, dzieli Cię Tylko jeden krok, który może być początkiem długoletniej współpracy.
Z pewnością szybko ulegnie zapomnieniu treść przesłanej korespondencji, ale nigdy nie zapomnisz tego jak się czułeś podczas współpracy z nami.

Zaczynamy?

 

*

Przeglądaj Dodaj plik

Podanie powyższych danych jest dobrowolne, przy czym podanie adresu e-mail jest niezbędne do uzyskania odpowiedzi. Osobie, której dane dotyczą, przysługuje prawo dostępu do treści jej danych osobowych oraz możliwość ich poprawiania lub usunięcia.

Administratorem danych osobowych jest Agencja Interaktywna Web Wizard.com z siedzibą we Wrocławiu, ul. Gen. Grota-Roweckiego 8/10, 52-220 Wrocław prowadząca działalność gospodarczą na podstawie wpisu do ewidencji działalności gospodarczej nr 1661331 z dnia 13.03.2003, REGON: 932899803, e-mail: biuro@webwizard.com.pl

Dane osobowe zawarte w powyższym formularzu będą przetwarzane w celu udzielenia odpowiedzi na zadane pytanie. Szczegółowe informacje znajdują się w Polityce prywatności.